Modeling Blur in X-ray Radiography using a Systems Approach

K. Aditya Mohan Robert M. Panas Jefferson A. Cuadra

Lawrence Livermore National Laboratory, Livermore, CA

Background: X-ray Radiography & Computed Tomography

Radiography:

- A 2D projected image of a 3D sample
- Projected image is also called a "Radiograph"
- Detector array measures the intensity of x-rays incident on it

Computed Tomography (CT)

- Radiographs at multiple rotation angles of the sample
- Sample is rotated while the x-ray source and detector stay fixed
- 3D sample is reconstructed from all the radiographs

Motivation, Objective, & Impact

Motivation

- Blur results in inaccurate localization of sample edges
- Total blur is the combination of blur from multiple sources: x-ray source, detector array, system motion, and object scatter.

Objective

- Estimate the point spread functions (PSF) of each individual source of blur
- Use a data driven approach

Impact

- Reduce blur by
 - Upgrading the imaging system components causing the blur
 - Use deblurring algorithms to remove blur

The Basic X-ray Transmission Model

■ **Beer's law:** Ratio of x-ray intensity with the sample, I(r), and intensity without the sample, I_0 , is equal to the negative exponential of the product of the total cross-section $\mu_{tot}(r)$, the sample density D, and the sample thickness L.

$$\frac{I(r)}{I_0} = I_N(r) = e^{-\mu_{tot}(r)DL}$$

- $\mu_{tot}(r)$ accounts for the loss of photons due to phenomena such as the photoelectric absorption, scatter, etc.
- Drawback: This model only accounts for the photons that emerge from the sample without any material interaction.

Quick Introduction to our X-ray Transmission Model

- Our Model: Beer's law + First Order Coherent Scatter
- Transmission Model: Let $\mu_{\mathcal{C}}(r)$ be the coherent scatter crosssection, then,

$$I_N(r)=T(r)=e^{-\mu_{tot}(r)DL}+C(\mu_{tot},\mu_C,D,L) \circledast p_{cd}(r)$$

Photons that don't Single coherent Convolution interact with the sample scatter photons with scatter PSF

- $p_{cd}(r)$ is the PSF of the blur due to coherent single scatter
 - A single parameter exponential density distribution
 - Models scatter as a function of x-ray energy and scatter angle

Blur Models

 Due to blur from the x-ray source, detector, and object motion, the normalized intensity at the detector plane is a convolution of multiple PSFs,

Blur PSF due to detector

$$I_N(r) = T(r) \circledast p_{sd}(r) \circledast p_{dd}(r) \circledast p_{md}(r)$$

Blur PSF due to source at detector plane

Blur PSF due to system motion at detector plane

Blur from the X-ray Source

By property of similar triangles, we have,

$$\frac{x_d'}{x_S'} = -\frac{z_{od}}{z_{SO}}$$

Source blur at the source plane –

$$p_{ss}(x'_s, y'_s) = \frac{1}{Z} \exp\left(-\frac{0.693}{W_s} \sqrt{x'_s^2 + y'_s^2}\right)$$

Source blur at the detector plane –

$$p_{sd}(x'_d, y'_d) = \frac{1}{Z} \exp\left(-\frac{0.693}{W_s} \frac{z_{so}}{z_{od}} \sqrt{x'_d^2 + y'_d^2}\right)$$

where W_s is the full width half maximum (FWHM) of the source, z_{so} is the source to object distance, z_{od} is the object to detector distance, and Z is normalizing constant

Blur due to Detector and System Motion

- Blur due to detector and system motion do not vary with the source to object or object to detector distances.
- Hence, we combine the two effects and model the convolution of the PSFs due to detector and motion using a single exponential mixture density distribution.

$$p_{dd}(r) \circledast p_{md}(r) = p \frac{1}{Z_1} \exp\left(-\frac{0.693}{W_{d1}} \sqrt{x_d'^2 + y_d'^2}\right) + (1 - p) \frac{1}{Z_2} \exp\left(-\frac{0.693}{W_{d2}} \sqrt{x_d'^2 + y_d'^2}\right)$$

Mixture parameter

FWHM of first exponential density with short tail

 Z_1 and Z_2 are normalizing constants

FWHM of second exponential density with long tail

Radiographs at Multiple Object Locations

- Changing the x-ray source, object, and detector positions will change the full width half maximums (FWHM) of each PSF by different amounts.
 - Source FWHM is proportional to the ratio of object to detector distance and source to object distance
- Acquire radiographs at different object to detector distances but fixed source to detector distance.
- Determine the sample width L, FWHMs W_s , W_{d1} , W_{d2} , and mixture probability p

Data Driven Approach to PSF Estimation

Radiographs of an edge of a uniform width Tungsten plate at three different source to object distances.

Using numerical optimization

Determine the width of the Tungsten sample L, FWHMs of the source PSF W_s and detector/motion PSFs W_{d1} , W_{d2} , and the mixture probability p of detector/motion PSF.

Optimization of Size of PSFs

Find parameters that minimizes the following mean squared error —

$$(\widehat{L}, \widehat{W}_s, p, \widehat{W}_{d1}, \widehat{W}_{d2}, \widehat{W}_c)$$

$$= \underset{L,W_{S},p,W_{d1},W_{d2},W_{c}}{\operatorname{argmin}} \left\{ \sum_{i} \left\| I_{N}^{(i)}(r) - T^{(i)}(r) \circledast p_{sd}^{(i)}(r) \circledast p_{dd}^{(i)}(r) \circledast p_{md}^{(i)}(r) \right\|^{2} \right\}$$

where
$$T^{(i)}(r) = e^{-\mu_{tot}(r)DL} + \mathcal{C}(\mu_{tot},\mu_{\mathcal{C}},D,L) \circledast p_{cd}^{(i)}(r)$$

- \widehat{W}_{s} gives the FWHM estimate for source PSF
- \widehat{W}_{d1} , \widehat{W}_{d2} gives the FWHM estimates for detector and motion PSF
- \widehat{W}_c gives the FWHM estimate for Coherent scatter \bigcirc Beyond the scope

of this presentation

Source PSF estimated by the Optimizer

Agrees with manufacturer provided FWHM value of 4 micrometers.

Distance (mm)

Combined Detector & Motion PSF Only showing a 1D slice of PSF

Weight/probability $p = 0.89 \times$

 $FWHM = 2.1 \mu m$

Weight/probability $(1 - p) = 0.11 \times$

 $FWHM = 670 \mu m$

Deblur using a Regularized Iterative Least Squares Algorithm

- Deblurring operation causes ringing artifacts
- Used regularization to reduce ringing
- Algorithm used is an iterative least squares technique with regularization

Line Profile comparing the deblurred result to the input radiograph

Noise Standard Deviation in red box

Input Radiograph: 0.0096

Deblurred Radiograph: 0.0017

Conclusions

- Data driven approach to model and estimate blur
- Useful to determine both spatially variant and invariant blur
- Use optimization to determine blur shape and size
- Reduce blur by
 - -Upgrading the imaging system components causing the blur
 - —Use deblurring algorithms to remove blur
- To use these techniques, contact me at mohan3@llnl.gov

Thank you! Questions?

Extracting the Edge Line Profiles of a Tungsten Plate

Detect Tungsten edge, draw perpendiculars to edge, and extract line profiles across the edge

Align and average the line profiles to reduce noise. Generate a lower noise image by repeating the line profile horizontally.

Normalized intensity of a Tungsten edge radiograph

Our X-ray Transmission Model (Detailed)

- Our Model: Beer's law + First Order Coherent Scatter
- Transmission Model: Let $\mu_{\mathcal{C}}(r)$ be the coherent scatter cross-section, then,

$$I_N(r) = T(r) = e^{-\mu_{tot}(r)DL} + \left(1 - e^{-\mu_{tot}(r)DL}\right)e^{-\mu_{tot}(r)DL/2} \frac{\mu_c(r)}{\mu_{tot}(r)} \circledast p_{cd}(r)$$

Photons that don't interact with the with the sample sample sample $e^{-\mu_{tot}(r)DL/2} \frac{\mu_c(r)}{\mu_{tot}(r)} \circledast p_{cd}(r)$

Convolution with scatter photons

- $p_{cd}(r)$ is the PSF of the detector blur due to coherent single scatter
 - A single parameter exponential density distribution
 - Models scatter as a function of x-ray energy and scatter angle

Data Fit Quality after Optimization

True edge is a line profile of $I_N(r)$ Estimated edge is a line profile of $T(r) \circledast p_{sd}(r) \circledast p_{dd}(r) \circledast p_{md}(r)$

Regularized Least Squares Iterative Deblurring Algorithm (Hidden Slide)

- Deblurred reconstructing of sample is given by,
- $\hat{T}(r) = \operatorname{argmin}_{T(r)} \left\{ \left\| I_N(r) T(r) \right\| \right\}$ $p_{sd}(r) \circledast p_{dd}(r) \circledast p_{md}(r) \right\|_{\Lambda}^2 + R(x)$ $R(x) \to L_{1.2} \text{ regularization}$
- $\Lambda \rightarrow$ Noise matrix modeling Poisson noise in radiograph

Ringing when regularization parameter is 0

Noise Standard Deviation in red box

Input Radiograph: 0.0096

Deblurred Radiograph: 0.0104

